АВТОНОМНАЯ НЕКОММЕРЧЕСКАЯ ОРГАНИЗАЦИЯ ДОПОЛНИТЕЛЬНОГО ОБРАЗОВАНИЯ «ДЕТСКИЙ ТЕХНОПАРК «КВАНТОРИУМ» В ГОРОДЕ НЕВИННОМЫССКЕ»

Принята на заседании педагогического совета

УТВЕРЖДАЮ

Директор АНО ДО «Кванториум»

35

Чилхачоян Т.В.

от Ду пакцета 2028 года Приказ №

М.П.

ДОПОЛНИТЕЛЬНАЯ ОБЩЕРАЗВИВАЮЩАЯ ПРОГРАММА

технической направленности

«Промробоквантум»

(название программы)

Уровень программы: вводный

Возрастная категория: от 8 до 10 лет

Состав группы: до <u>14</u> человек

Срок реализации: 5 месяцев — 36 ч

Автор-составитель:

Воробьёва А.Н., педагог дополнительного образования

г. Невинномысск, 2025 год

ПАСПОРТ

дополнительной общеобразовательной общеразвивающей программы технической направленности «Промробоквантум: Основы робототехники»

1 Информационная карта программы

Наименование	Ставропольский край, г. Невинномысск			
муниципалитета Наименование организации	Автономная некоммерческая организация дополнительного образования «Детский технопарк «Кванториум» в городе Невинномысске»			
Адрес учреждения	Ставропольский край, г. Невинномысск, ул. Белово 4Б			
ФИО автора (составителя) программы	Воробьева Анна Николаевна			
Название программы	«Промробоквантум: Основы робототехники»			
Тип программы	Дополнительная общеобразовательная общеразвивающая			
Направленность	Техническая			
Срок реализации	5 месяцев			
Общий объем программы в часах	36			
Целевая аудитория обучающихся	8-10 лет			
Форма обучения	Очная			
Уровень содержания	Вводный			
Продолжительность освоения (объем)	36 часов			
Аннотация программы	Современное общество характеризуется очень быстрыми и глобальными изменениями во всех областях человеческой жизни. Дополнительное образование обладает большим потенциалом в развитии и подготовке личности ребенка к самоопределению и самореализации в этих условиях. В процессе обучения обучающиеся осваивают основы робототехники на примере Lego EV3, включая физику робота, конструирование базовой тележки, работа с сенсорными и измерительными датчиками, соревновательная робототехника, программирование микроконтроллеров, основы электричества и механики, а также изучают основы командной работы. Программа выполняет как образовательную, так и профориентационную роль и позволяет обучающемуся приобрести базовые компетенции в области программирования и конструирования роботов под конкретные задачи. Успешное прохождение программы «Промробоквантум. Вводный модуль» («Основы робототехники») является необходимым условием для дальнейшего обучения на программе			

	«Промробоквантум. Базовый модуль» (так называемая «линия 1»). По результатам обучения каждому успешно прошедшему программу обучающемуся выдаётся сертификат.
Цель программы	Создание условий для личностного развития, позитивной социализации и профессионального самоопределения учащихся через увлечение робототехникой.
Задачи программы	Предметные задачи: - обучить конструированию и программированию базовой тележки; - обучить конструированию и программированию роботов с сенсорными датчиками; - научить создавать автономных роботов под задачи потребителя;
	Метапредметные задачи: - формирование навыков видеть проблему; - формирование навыков наблюдения, умения делать выводы и заключения, доказывать, защищать собственные идеи; - развитие исследовательских навыков; - развитие мелкой моторики рук при сборке конструктора; - освоение навыков решения проблемных ситуаций, выдвижения гипотез, наблюдения, применять аналитические методы сравнения, обобщения, классификации изучаемого материала и специализированной литературы.
	Личностные задачи: - формирование интереса к робототехнике; - воспитание нравственных качеств личности; - воспитания позитивного отношения к труду; - совершенствование коммуникационных навыков работы в большом коллективе и малой группе; - формирование мотивации к решению поставленных задач и реализация творческих идей; - развитие рефлексии.
	Профориентационные задачи: - дать представление о профессиях, связанных с робототехникой.
Ожидаемые результаты	Предметные результаты: - умеет конструировать и программировать базовую тележку; - умеет конструировать и программировать роботов с сенсорными датчиками; - умеет создавать автономных роботов под задачи потребителя;

Метапредметные результаты: - сформированы навыки наблюдения, умения делать выводы И заключения, доказывать, защищать собственные идеи; - развиты исследовательские навыки; при развита мелкая моторика сборке рук конструктора; - освоены навыки решения проблемных ситуаций, выдвижения гипотез, применять аналитические методы сравнения, обобщения, классификации изучаемого материала и специализированной литературы. Личностные результаты: - сформирован интерес к робототехнике; - проявляет нравственные качества личности; - проявляет патриотические качества личности; - проявляет трудовые качества; - сформировано умение коммуницировать в большом коллективе и малой группе; - мотивирован к решению поставленных задач и реализация творческих идей; - сформирован навык рефлексии. Профориентационные результаты: - имеет представление о профессиях, связанных с робототехникой. В данной программе предусмотрено участие детей с Особые условия (доступность для детей с ОВЗ) особыми образовательными потребностями: детей с ограниченными возможностями здоровья, детей находящихся в трудной жизненной ситуации и детейинвалидов. Возможность реализации в Не предусмотрена сетевой форме Предусмотрена с применением электронного обучения, Возможность реализации в дистанционных образовательных технологий. электронном формате с применением дистанционных технологий - Ноутбуки; Материально-техническая база - интерактивная доска; - базовый робототехнический набор начального уровня LEGO MINDSTORMS EV3 ресурсный робототехнический набор начального уровня - Ресурсный набор LEGO MINDSTORMS **Education EV3**

Содержание:

1 Комплекс основных характеристик программы
1.1 Пояснительная записка
1.2 Цели и задачи программы
1.3 Содержание программы
1.4 Планируемые результаты
2 Комплекс организационно-педагогических условий
2.1 Календарный учебный график
2.2 Условия реализации программы
2.3 Формы аттестации
2.4 Оценочные материалы
2.5 Методические материалы
Список литературы

1. Комплекс основных характеристик программы 1.1 Пояснительная записка

Дополнительная общеобразовательная общеразвивающая программа «Промробоквантум: Основы робототехники» разработана в соответствии с:

- Федеральным Законом Российской Федерации от 29.12.2012 г. № 273 «Об образовании в Российской Федерации» (в ред. Федеральных законов от 03.07.2016 №313-Ф3, от 31.07.2020 №304-Ф3, от14.07.2022 №295-Ф3);
- Распоряжением Правительства Российской Федерации от 04.09.2014 г. № 1726-р «Концепция развития дополнительного образования детей»;
- Постановлением Правительства РФ от 18.09.2020 г. № 1490 «О лицензировании образовательной деятельности»;
- Постановлением Главного государственного санитарного врача Российской Федерации от 28.09.2020 г. № 28 «Об утверждении санитарных правил СП 2.4. 3648-20 «Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодежи»;
- Приказом Министерства образования Ставропольского края от 16.02.2023 г. № 253-пр «Об утверждении типовых моделей»;
- Приказом Министерства просвещения РФ от 27.07.2022 г. № 629 «Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам»;
- Приказом Министерства просвещения РФ от 03.09.2019 г. № 467 «Об утверждении Целевой модели развития систем дополнительного образования детей»;
- Приказом Минобрнауки России от 23.08.2017 г. № 816 «Об утверждении Порядка применения организациями, осуществляющими образовательную деятельность, электронного обучения, дистанционных образовательных технологий при реализации образовательных программ»;
 - Приказом Министерства науки и высшего образования Российской

Федерации, Министерства просвещения Российской Федерации от 05.08.2020 г. № 882/391 «Об организации и осуществлении образовательной деятельности при сетевой форме реализации образовательных программ»;

- Письмом Минобрнауки России от 18.11.2015 г. № 09-3242 «О направлении информации» (вместе с «Методическими рекомендациями по проектированию дополнительных общеразвивающих программ (включая разноуровневые программы)»;
- Рекомендациями ФГАУ «Фонд новых форм развития образования» (для программ направления «Промробоквантум»);
 - Уставом АНО ДО «Детский технопарк Кванториум».

Дополнительная общеобразовательная общеразвивающая программа «Промробоквантум: Основы робототехники» реализуется на базе АНО ДО «Детский технопарк «Кванториум» в городе Невинномысске» в рамках подготовки обучающихся в области робототехники.

Настоящая программа отвечает требованиям Концепции развития дополнительного образования детей, утверждённой распоряжением Правительства РФ от 4 сентября 2014 г. № 1726-р, откуда следует, что одним из принципов проектирования и реализации дополнительных общеразвивающих программ является разноуровневость.

Направленность программы – техническая.

Программа является авторской. При разработке программы использовались учебно-методические материалы от Lego Mindstorms Education EV3 Classroom; учебно-методические материалы по работе с конструктором Red Pro+ ОТ производителя образовательных робототехнических комплексов R:ED – ROBOTICS EDUCATION.

Актуальность программы «Промробоквантум: Основы робототехники» заключается в выстраивании разноуровневой системы обучения, позволяющей выбрать обучающемуся тот уровень (стартовый, базовый, углубленный), который соответствует его образовательным потребностям и возможностям. Программой предусмотрен проектный

подход, позволяющий максимально раскрыть творческий И исследовательский потенциал обучающихся как В группе, И индивидуально. Исследования учёных доказали, что только в детстве могут быть заложены основы творческой личности, сформирован особый склад ума конструкторский. Но и фундаментально-теоретическое исследование креативных способностей является актуальным направлением современной педагогики и психологии, в полной мере отвечающим вызовам времени и общества. В потребностям государства И условиях нового технологического прогресса, в меняющихся условиях российского общества, творческий, адаптивный человек должен стать не исключением, а правилом, работы образовательной результатом системы Эффективным путём развития устойчивого интереса детей и подростков к науке и технике, развития их креативности и конструкторского мышления являются занятия по программе «Основы робототехники».

Вместе с тем, актуальность программы обусловлена также тем, что в настоящее время, изучение основ робототехники социально востребовано, т.к. отвечает запросам Стратегии научно-технологического развития Российской Федерации, а также желаниям родителей видеть своего ребенка технически образованным, общительным, психологически защищённым, умеющим найти адекватный выход в любой жизненной ситуации. Соответствует ожиданиям обучающихся по обеспечению их личностного роста, их заинтересованности в получении качественного образования, отвечающего их интеллектуальным способностям, культурным запросам и личным интересам. Обучающиеся вовлечены в учебный процесс создания моделей - роботов, проектирования и программирования робототехнических устройств. Желают участвовать в робототехнических соревнованиях, конкурсах, олимпиадах, конференциях.

К числу наиболее актуальных проблем относится невысокая мотивация детей к познанию и научно-техническому творчеству, низкому престижу инженерных направлений трудовой деятельности, поэтому особую

актуальность приобретает совершенствование дополнительных образовательных программ, создание модульных программ для особого развивающего пространства и форм для интеллектуального развития детей и молодёжи, их подготовка по программам технической направленности. Мотивацию детей к научно-инженерному творчеству можно развить при помощи образовательной робототехники, т. к. робототехника на сегодняшний момент является одним из направлений, способных объединить в себе фактически все школьные предметы естественнонаучного цикла, реализовать и укрепить межпредметные связи.

Новизна, отличительные особенности.

К отличительным особенностям программы можно отнести её практическую направленность. Обучающиеся изучают основы механики, алгоритмизации, программирование микроконтроллеров. Все практические занятия проводятся на реальных конструкторах, с помощью которых обучающиеся учатся построению роботизированных манипуляторов и самоходных автоматов, выполняющих заданные функции.

Содержание программы ориентировано на:

- создание условий для личностного развития, позитивной социализации и профессионального самоопределения учащихся;
- удовлетворение индивидуальных потребностей учащихся в интеллектуальном, нравственном развитии, а также в занятиях научнотехническим творчеством;
- формирование и развитие творческих способностей учащихся, выявление, развитие и поддержку талантливых учащихся;
- обеспечение духовно-нравственного, гражданского, патриотического, трудового воспитания учащихся.

Преимущества данной программы выражено её адаптивностью под отдельных обучающихся с учётом полученной информации о них, а также дифференцированным подходом, обеспечивающим осуществление процесса обучения в гомогенных группах.

В ходе разработки программы были проанализированы материалы дополнительных общеобразовательных общеразвивающих программ:

- Бюджетного учреждения Омской области ДО «Центр духовнонравственного воспитания «Исток», «Конструирование плюс», авторысоставители: Кургина А.Е, Викулова Н.В, Масягина О.Ю., г. Омск;
- ГБОУ «Лицей №57 (Базовая школа Российской академии наук» Самарской области, «Робототехника», составитель: Панов В.А., г. Тольятти.;
- ФГАОУ ВО «Казанский (Приволжский) федеральный университет» Общеобразовательная школа-интернат «ІТ-лицей», «Робототехника Lego», составитель: Латыпов И.И., г. Казань.

Программа разработана с опорой на специфику предполагаемой деятельности детей, обусловленной высокой развивающей способностью, многофункциональностью, техническими и эстетическими характеристиками, разнообразной учебной, проектной и игровой деятельностью ребенка. Робототехника позволяет развить такие качества, как оригинальность мышления, гибкость ума, исследовательский интерес, хорошее пространственное мышление, навыки стратегического планирования и социального взаимодействия в практических ситуациях, влияющих на развитие общих способностей ребенка. Коллективное взаимодействие в рамках занятий способствует воспитанию социально активной личности.

Программа содержит критерии оценивания деятельности обучающихся, которые предполагают разные уровни освоения программы: высокий, средний и низкий уровень соответственно. Оценивание деятельности обучающихся проводится систематически и опирается на различные виды контроля; используется различный диагностический инструментарий. Диагностика осуществляется по итогам выполнения заданий, зависимости от сложности, с которой справился обучающихся, определяется программы. При оглашении работы уровень освоения результатов обучающихся, педагог озвучивает информацию о творческих и креативных достоинствах каждого ребенка, при этом в максимально корректной форме

делает замечания, направляя на дальнейшее развитие и творчество.

Адресат программы.

Программа адресована детям от 8 до 10 лет, с любым социальным статусом, детям, имеющим различные интеллектуальные способности. В данной возрастной категории обучающиеся проявляют интерес к творчеству, у них развито воображение, выражено стремление к самостоятельности. Они нацелены на достижение положительных результатов, это качество очень важно для раскрытия и дальнейшего формирования творческого потенциала личности. В этом возрасте формируется личность, для которой характерны новые отношения со взрослыми и сверстниками, включение в целую систему коллективов, включение в новый вид деятельности.

На вводном уровне дети 7-10 лет способны выполнять предлагаемые задания по алгоритму, предполагающему минимальную сложность учебных заданий, способствующему развитию умения конструировать и программировать. Освоение программного материала данного уровня предполагает получение обучающимися первоначальных знаний в области робототехники.

Программа особенно будет интересна и полезна тем, кто имеет интерес к техническому творчеству не зависимо от гендерной принадлежности, от физических и иных особенностей и состояний обучающихся.

Условия набора обучающихся. На обучение по программе принимаются все желающие без какого-либо конкурсного отбора или требований к минимальным стартовым компетенциям.

Количество обучающихся: занятия проводятся до 13 человек в каждой группе, с обязательным перерывом через каждые 45 минут работы.

Объем и срок реализации программы.

Объем программы – 36 часов.

Программа рассчитана на 5 месяцев обучения.

Продолжительность учебных занятий определена Положением о режиме занятий обучающихся АНО ДО «Кванториум».

Формы обучения и режим занятий.

Режим занятий соответствует СанПин 2.4.3648-20 «Санитарноэпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодёжи».

Форма обучения – очная.

Основной формой проведения занятия является работа в группе, команде. Наряду с групповой формой работы во время занятий осуществляется индивидуальный и дифференцированный подход к обучающимся.

Индивидуальное освоение ключевых способов деятельности происходит на основе системы заданий и практических предписаний, изложенных в Интернет-ресурсах и учебных материалах. Большинство заданий выполняется с помощью конструкторов, персонального компьютера и программного обеспечения, входящего в комплект модели робота. На определённых этапах обучения обучающиеся объединяются в группы, состав групп мобильный, не более 2-4 человек.

Выполнение творческих проектов завершается публичной защитой результатов с представлением функций и практической значимости созданного робота.

Основные формы работы и виды деятельности обучающихся:

- Беседа изложение, обсуждение основных понятий, разбор ошибок;
- Демонстрация различных материалов (схем, фотографий, презентаций, видеоматериалов);
- Работа в сети Интернет поиск информации, просмотр ресурсов сети по робототехнике;
 - Практикум включает в себя сборку и /или программирование робота;
- Эксперимент установление опытным путём правильность или ошибочность гипотез, проверка влияния различных условий на работу робота;
- Мини-проект решение поставленных задач в рамках занятия, имеются варианты решения, заданные инструкции, работа в группах;

- Проект-проблема самостоятельное решение озвученной проблемы (анализ, проектирование, конструирование, программирование);
 - Творческая работа реализация собственного проекта;
 - Решение кейсов;
- Решение задач вычислительные задачи, заполнение таблиц, анализ алгоритмов;
 - Соревнование;
 - Выставка.

Образовательные формы, используемые в процессе обучения определены Положением об организации образовательного процесса АНО ДО «Кванториум».

При реализации программы предусмотрены как аудиторные, так и внеаудиторные занятия, которые проводятся группами и/или индивидуально с применением электронного обучения, дистанционных образовательных технологий с учётом требований Порядка применения организациями, осуществляющими образовательную деятельность, электронного обучения, дистанционных образовательных технологий при реализации образовательных программ.

1.2 Цели и задачи программы

Цель программы: создание условий для личностного развития, позитивной социализации и профессионального самоопределения обучающихся через увлечение робототехникой.

Цель программы вводного уровня: формирование у обучающихся устойчивого интереса и начальных представлений о механике и робототехнике.

Задачи вводного уровня:

Предметные задачи:

- ознакомление с устройством роботов;
- ознакомление с правилами безопасной работы при конструировании роботов;
- обучение основным технологиям сборки и программирования робототехнических устройств;
 - обучение конструированию и программированию базовой тележки;
- обучение конструированию и программированию роботов с сенсорными датчиками;

Метапредметные задачи:

- формирование навыков наблюдения, умения делать выводы и заключения, доказывать, защищать собственные идеи;
 - развитие мелкой моторики рук при сборке конструктора;
- освоение навыков решения проблемных ситуаций, выдвижения гипотез, наблюдения, делать выводы и заключения, доказывать, защищать собственные идеи; применять аналитические методы сравнения, обобщения, классификации изучаемого материала и специализированной литературы.

Личностные задачи:

- формирование интереса к робототехнике;
- воспитание нравственных качеств личности;
- воспитание патриотических качеств личности;

- совершенствование навыков работы в большом коллективе и малой группе;
- формирование мотивации к решению поставленных задач и реализация творческих идей;
 - развитие рефлексии.

Профориентационные задачи:

- дать представление о профессиях связанных с робототехникой

1.3. Содержание программы

Содержание учебного плана вводного уровня

Возраст обучающихся – 8-10 лет.

Уровень: вводный (ознакомительный). Срок реализации: 5 месяцев – 36 часов, 2 часа в неделю.

Учебный план вводного уровня

№ п/п	Название раздела, темы	К	оличество	Формы аттестации	
		Всего	Теория	Практика	(контроля)
1.	Вводное занятие. Техника безопасности. Введение в область робототехники.	2	2	-	Опрос
2.	Практическая работа № 1: Игра «Самая высокая башня». Игра «Спина к спине».	2	-	2	Игра
3.	Практическая работа № 2: Создание одномоторной тележки.	2	-	2	Практическая работа
4.	Практическое занятие № 3. Знакомство с микроконтроллером, запуск демонстрационной программы, управление двигателями при помощи кнопок.	2	-	2	Практическая работа
5.	Практическое занятие № 4. Изучение интерфейса среды разработки ПО, подключение контроллера к ПК, знакомство с операторами.	4	-	4	Практическая работа
6.	Практическое занятие № 5. Сборка и программирование вентилятора.	4	-	4	Практическая работа
7.	Практическое занятие № 6. Сборка и программирование движения базового робота.	4	-	4	Практическая работа
8.	Практическая работа № 7. «Органы чувств робота».	4	-	4	Практическая работа
9.	Практическое занятие № 8. Датчик ультразвука. Кейс	4	-	4	Практическая работа, кейс

	«Пугливый робот»				
10.	Практическое занятие № 9. Датчик касания. Кейс «Умное пианино»	2	-	2	Практическая работа, кейс
11.	Практическое занятие №10. УЗ-датчик. Создание умного шлагбаума.	4	-	4	Практическая работа
12.	Итоговое занятие. Творческая защита проекта.	2	-	2	Практическая работа, выставка
Итог	0:	36	2	34	

Содержание учебного плана вводного уровня

Вводное занятие. Техника безопасности.

<u>Теория:</u> Рассказ о детском технопарке «Кванториум», знакомство с направлением «Промробоквантум». Обучение правилам поведения и технике безопасности (форма занятия - беседа, просмотр видеороликов, инструктаж).

Проведение экскурсии по детскому технопарку «Кванториум».

Организация рабочего места в соответствии с требованиями техники безопасности, соблюдения норм СанПин 2.4.3648-20 «Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодёжи»; определение потенциальных опасностей на рабочем месте.

Знакомство с основами научно-технического творчества и инженерной деятельности.

Знакомство с понятиями «робот», «робототехника». Классификация роботов и области их применения в деятельности человека (форма занятия - беседа, просмотр видеороликов, инструктаж).

Знакомство обучающихся с конструктором: изучение названий и принципов крепления деталей.

Практическая часть.

Практическая работа № 1: Игра «Самая высокая башня». Игра «Спина к спине».

Практическая работа № 2: Создание одномоторной тележки.

Практическое работа № 3. Знакомство с микроконтроллером, запуск демонстрационной программы, управление двигателями при помощи кнопок.

Практическое занятие № 4. Изучение интерфейса среды разработки ПО, подключение контроллера к ПК, знакомство с операторами.

Практическое занятие № 5. Сборка и программирование вентилятора.

Практическое занятие № 6. Сборка и программирование движения базового робота.

Практическая работа № 7. «Органы чувств робота».

Практическое занятие № 8. Датчик ультразвука. Кейс «Пугливый робот»

Практическое занятие № 9. Датчик касания. Кейс умное пианино. Практическое занятие № 10. УЗ-датчик. Создание умного шлагбаума. Итоговое занятие. Творческая защита проекта.

1.4 Планируемые результаты

В результате освоения общеобразовательной общеразвивающей программы обучающиеся приобретают определённые компетенции, необходимые для дальнейшего успешного обучения в области робототехники.

Первый год обучения (вводный уровень)

Предметные результаты.

Требования к знаниям, умения и навыкам, которые должен приобрести обучающийся в процессе занятий по окончанию вводного уровня.

- ознакомлен с устройством роботов;
- знает правила безопасной работы при конструировании роботов;
- владеет основными технологиям сборки и программирования робототехнических устройств;
 - умеет конструировать и программировать базовую тележку;
- умеет конструировать и программировать роботов с сенсорными датчиками;

Метапредметные результаты:

- сформированы навыки наблюдения, умения делать выводы и заключения, доказывать, защищать собственные идеи;
 - развита мелкая моторика рук при сборке конструктора;
- освоены навыки решения проблемных ситуаций, выдвижения гипотез, наблюдения, делать выводы и заключения, доказывать, защищать собственные идеи; применять аналитические методы сравнения, обобщения, классификации изучаемого материала и специализированной литературы.

Личностные результаты:

- сформирован интерес к робототехнике;
- проявляет нравственные качества личности;

- сформировано умение работать в большом коллективе и малой группе;
- мотивирован к решению поставленных задач и реализации творческих идей.

Профориентационные результаты:

- имеет представление о профессиях связанных с робототехникой.

2. Комплекс организационно-педагогических условий

2.1 Календарный учебный график вводного уровня (Приложение 1)

2.2 Условия реализации программы

Материально-техническое обеспечение

Наименование модулей	Наименование обязательного оборудования
Модуль «Введение в	Базовый робототехнический набор начального уровня LEGO
робототехнику»	MINDSTORMS EV3 45544 базовый набор - 2 шт.;
	Ресурсный робототехнический набор начального уровня -
	Ресурсный набор LEGO MINDSTORMS Education EV3 - 2 шт.;
	Датчик цвета базового робототехнического набора начального
	уровня -Датчик цвета EV3 45506 - 2 шт.;
Модуль «Применение	Ультразвуковой датчик базового робототехнического набора
микроконтроллеров в	начального уровня - Ультразвуковой датчик EV3 45504- 2 шт.;
робототехнике»	Wayyamyuman Dad Dua 12 yym
Молули «Мохоника и	Констуктор Red Pro+ - 12 шт.;
Модуль «Механика и динамика роботов»	Автономные мобильные роботы;
динамика рооотов»	ABTOHOMHBIC MOODIBHBIC POOOTBI,
Модуль «Констуктор	Мобильные мехатронные системы;
Red Pro+»	The charge menary charge energing,
	Набор для конструирования роботов из пластика для
Модуль 1 «Электроника»	соревнования VEX IQ Super Kit 228-3670 - 2 шт.;
	Дополнительный набор для конструирования роботов из
Модуль 2 «Пайка»	пластика для соревнования - Ресурсный набор VEX IQ
	228-3600, 228-2531, 228-0004 - 2 шт.;
Модуль 3 «Ардуино»	
	Промышленные робототехнические системы;
Модуль 4	Комплект по изучению учебных роботизированных
«Проектирование	манипуляторов DOBOT Magician - роботизированный
печатных плат»	манипулятор (образовательная версия) - 2 шт.;
Manager 5 VI.T.	Комплект по изучению учебных систем линейного перемещения -Комплект линейных перемещений DOBOT
Модуль 5 «ІоТ и	Мадісіап- 2 шт.;
Автоматизация»	Комплект по изучению учебных систем конвейерных линий -
	Конвейерная лента DOBOT Magician- 2 шт.
	Rombenephan Menta Bobo i Magietan 2 mi.
	Пневматические и мехатронные системы робототехнических
	комплексов.
	Сервисные коллаборативные робототехнические комплексы.
	Микроконтроллеры семейки Arduino, датчики наличия газов в
	среде, датчики линии, камера технического зрения, датчики
	влажности почвы и воздуха, датчики температуры, двигатели,
	сервоприводы, Motor Shield, наборы Malina с Raspberry Pi.

Кадровое обеспечение. Для реализации дополнительной общеобразовательной общеразвивающей программы требуется педагог, обладающий профессиональными знаниями в предметной области, соответствующими профилю ДОП.

2.3 Формы аттестации

В ходе реализации программы ведётся систематический учёт знаний и умений обучающихся. Осуществляется следующие формы педагогического контроля: опрос, практические и лабораторные работы, а также выполнение кейсов.

На основе результатов текущего контроля проводится вводная, промежуточная диагностика и итоговая аттестация:

Входная диагностика. На данном этапе оценивается общий уровень знаний, умений и начальных компетенций учащихся. Данная диагностика позволяет установить исходные возможности каждого обучающегося, чтобы рационально организовать процесс обучения.

Промежуточная диагностика проводится после изучения основных тем, для оценки степени и качества усвоения обучающимися материала на каждом этапе данной программы. Целью данной диагностики является оценка успешности прохождения образовательного маршрута и дальнейшей возможности корректировки методов и средств обучения.

Итоговая аттестация. В конце изучения всей программы проводится итоговый контроль в виде творческих проектов учащихся. Обучающиеся презентуют свой проект и рассказывают какие задачи решаются благодаря их разработке. Данный этап мониторинга предполагает анализ результатов обучения, оценку эффективности усвоения общеобразовательной общеразвивающей программы обучающимися.

Формами освоения данной программы являются: творческая защита работ, самооценка, коллективное обсуждение.

2.4 Оценочные материалы (Приложение 2)

Перечень (пакет) диагностических методик, достижений учащимися планируемых результатов, критерии итоговой аттестации.

2.5 Методические материалы

Дополнительная общеобразовательная общеразвивающая программа «Промробоквантум: Основы робототехники» интегрирует в себе достижения современных направлений в области робототехники, информационных технологий, физики, мехатроники. Программой предусмотрено проведение комбинированных занятий: занятия состоят из теоретической и практической частей, а проектной деятельности. При проведении также занятий используют различные формы: лекции, практические и лабораторные работы, беседы, конференции, конкурсы, викторины, проектная игры, И исследовательская деятельность. Занимаясь ПО данной программе обучающиеся должны получить передовые знания в области робототехники, а также в смежных областях; практические навыки работы на разных видах оборудования; современного умение планировать И реализовывать конкретные исследовательские и прикладные задачи; понимать роль научных исследований современном мире и значимость международного сотрудничества. При проведении занятий используются приёмы и методы теории решения изобретательских задач, развития критического мышления и др.

Для обучающихся по данной программе используется: демонстрационный материал (презентации), электронные образовательные ресурсы, конструкторы, а также раздаточный материал и наглядные пособия.

При реализации программы используется сочетание аудиторных и внеаудиторных форм образовательной работы. Наряду с традиционными используются активные и интерактивные методы и приёмы, способствующие развитию мотивационной основы познавательной деятельности в процессе реализации программы. Организация самостоятельной работы обучающихся осуществляется как под руководством педагога, так и с использованием модели внутригруппового шефства и наставничества (тьютерства). Педагог

организует получение обратной связи со всеми обучающимися и на основе анализа текущих результатах образовательной деятельности, своевременно корректирует образовательные подходы в направлении углубления дифференциации и индивидуализации.

Формы и методы обучения.

В организации обучения используются современные образовательные технологии:

- 1. Информационно-коммуникативные технологии;
- 2. Технология проектного обучения;
- 3. Игровые технологии;
- 4. Интерактивные формы и методы обучения.

В процессе обучения предусматриваются следующие формы учебных занятий:

- Комбинированные занятие (сочетающее в себе объяснение и практическое упражнение);
 - Беседа;
 - Консультация;
 - Дискуссия;
- Практическое упражнение под руководством педагога по закреплению определённых навыков;
 - Учебная игра.

Формы организации учебной деятельности: работа в парах, групповая работа, индивидуальная работа, игры и викторины, решение проблемных ситуаций, использование ТСО, интерактивные методы.

Занятия включают в себя теоретическую часть и практическую деятельность обучающихся. Теоретическая часть даётся в форме бесед с просмотром иллюстрационного материала (с использованием презентационного оборудования).

Формы занятий выбираются с учётом возрастных и психологических особенностей обучающихся и изучаемой темы программы.

Учебный процесс предусматривает следующие формы обучения:

- Коллективную, позволяющую развивать в детях чувство ответственности, сопереживания, подчинения своих интересов общей цели (учебные занятия и воспитательные мероприятия);
- Групповую, помогающую детям при реализации своих возможностей (учебные занятия, воспитательные мероприятия);
- Индивидуальную, позволяющую осуществлять индивидуальный подход к ребёнку (учебные занятия и консультации).

Совместное творчество обучающихся разных возрастов имеет большое значение при формировании у детей устойчивых эмоциональных связей, устраняет трудности в общении.

Методы воспитательной работы с детьми.

- Методы формирования познания: убеждение, инструктаж, рассказ, лекция, этическая беседа, внушение, объяснение, разъяснение, пример, диспут;
- Методы организации деятельности и формирования опыта поведения: упражнение поручение, педагогическое требование, общественное мнение, воспитательные ситуации;
 - Методы стимулирования: мотивация соревнование, поощрение.

Основной формой организации учебного процесса является учебное занятие.

Структура занятий

- 1. Вводный инструктаж к началу работы.
- 2. Особенности выполнения работы.
- 3. Беседа. Демонстрация наглядных примеров и схем.
- 4. Формирование и реализация идей.
- 5. Практическое выполнение работы. Оформление.
- 6. Подведение итогов занятия. Анализ результатов, затруднений.

Список литературы

Для педагогов:

- Федеральный закон Российской Федерации от 29.12.2012 г.
 № 273-ФЗ «Об образовании в Российской Федерации» (с изменениями).
- 2. Никулин С. К., Полтавец Г. А., Полтавец Т. Г. Содержание научно-технического творчества учащихся и методы обучения. М.: Изд. МАИ. 2004.
- 3. Полтавец Г. А., Никулин С. К., Ловецкий Г. И., Полтавец Т. Г. Системный подход к научно-техническому творчеству учащихся (проблемы организации и управления). У МП. М.: Издательство МАИ. 2003.
- 4. Власова О. С. Образовательная робототехника в учебной деятельности учащихся начальной школы. Челябинск, 2014г.
- 5. Мирошина Т. Ф. Образовательная робототехника на уроках информатики и физике в средней школе: учебно-методическое пособие. Челябинск: Взгляд, 2011г.
- 6. Перфильева Л. П. Образовательная робототехника во внеурочной учебной деятельности: учебно-методическое. Челябинск: Взгляд, 2011г.
- 7. Зенкевич С. Л., Ющенко А. С. Основы управления манипуляционными роботами: учебник для вузов // 2-е изд., исправ. и доп. М.: Изд-во МГТУ им. Н.Э.Баумана, 2004. 480 с.
- 8. Иванов В. А., Медведев В.С. Математические основы теории оптимального и логического управления М.: Изд-во МГТУ им. Н.Э. Баумана, 2011. 600 с.
- 9. Крейг Д. Введение в робототехнику. Механика и управление // Изд-во «Институт компьютерных исследований», 2013. 564 с.
- 10. Основы теории исполнительных механизмов шагающих роботов / А. К. Ковальчук, Д. Б. Кулаков, Б. Б. Кулаков и др. М.: Изд-во «Рудомино», 2010. —170 с.

- 11. Проектирование систем приводов шагающих роботов с древовидной кинематической системой: учебное пособие для вузов / Л. А. Каргинов, А. К. Ковальчук, Д. Б. Кулаков и др. М.: Изд-во МГТУ им. Н.Э. Баумана, 2013. 116 с.
- 12. Робототехнические системы и комплексы / Под ред. И. И. Мачульского М.: Транспорт, 1999. 446 с.
- 13. Справочник по промышленной робототехнике т.1 / Под ред. Ш. Нофа М.: Машиностроение, 1989. 480 с.
- 14. Бурдаков С. Ф., Дьяченко В. А., Тимофеев А. Н. Проектирование манипуляторов промышленных роботов и роботизированных комплексов М.: Высшая школа, 1986. 264 с.
- 15. Шахинпур М. Курс робототехники: учебник для вузов / Под ред. С.Л. Зенкевича — М.: Мир, 1990. — 527 с.
- 16. Воротников С.А. Информационные устройства робототехнических систем М.: Изд-во МГТУ им. Н. Э. Баумана, 2005. 384 с.
- 17. Пупков К. А., Коньков В. Г. Интеллектуальные системы М.: Изд-во МГТУ им. Н.Э. Баумана, 2003.
- 18. Математическое моделирование систем приводов роботов с древовидной кинематической структурой: учебное пособие для вузов / Д. Б. Кулаков и др. М.: Изд-во «Рудомино», 2008. 64 с.
- 19. Анурьев, В.И. Справочник конструктора-машиностроителя: в 3 т. / В.И. Анурьев. Под ред. И. Н. Жестковой. 8-е изд., перераб. и доп. М.: Машиностроение, 2001.
- 20. Бейктал Джон [Beyctal John] Конструируем роботов на Arduino. Первые шаги / Джон Джон [John Beyctal]; пер. с англ. О. А. Трефиловой. М.: Лаборатория знаний, 2016. 320 с.
- 21. Бейктал Джон [Beyctal John] Конструируем роботов от А до Я. Полное руководство для начинающих / Джон Джон [John Beyctal]; пер. с англ. О. А. Трефиловой. М.: Лаборатория знаний, 2018. 394 с.

- 22. Блум Джереми [Blum Jeremy] Изучаем Arduino: инструменты и методы технического волшебства / Джереми Блум [Jeremy Blum]; пер. с англ. СПб.: БХВ-Петербург, 2017. 336 с.
- $23.\,\mathrm{Владимир},\ \mathrm{B.M.}\ \mathrm{Электрический}\ \mathrm{привод}\ /\ \mathrm{B.M.}\ \mathrm{Владимир}\ -\ \mathrm{M.:}$ ИНФРА-М, $2019.-364\ \mathrm{c.}$
- 24. Дмитрова М.И. 33 схемы с логическими элементами И-НЕ / М.И. Дмитрова. Ленинград: Энергоатомиздат, 1988. 112 с.
- 25. Жмудь, В.А. Моделирование и численная оптимизация замкнутых систем автоматического управления в программе VisSim: учебное пособие / В.А. Жмудь. Новосибирск: НГТУ. 2012. 124 с.
- 26. Кириченко, П.Г. Электроника. Цифровая электроника для начинающих / П.Г. Кириченко. СПб.: БХВ-Петербург, 2019. 176 с.
- 27. Ковалев, И.М. Расчет и проектирование ременных передач. Методические указания к курсовому проектированию по деталям машин и основам конструирования. / И.М. Ковалев, С.Г. Цыбочкин Барнаул: Изд-во АлтГТУ, 2008. 35 с.
- 28. Ковалев, И.М. Кинематический расчет электромеханического привода. Методические указания по выполнению расчетных заданий и курсовых проектов по деталям машин и механике. / И.М. Ковалев Барнаул: Изд-во АлтГТУ, 2005. 26 с.
- 29. Матронина, Л.Ф. Философия техники / Л.Ф. Матронина, Г.Ф. Ручкина, О.Б. Скородумова. М.: МИРЭА, 2015. 156 с.
- 30. Момот, М.В. Мобильные роботы на базе Arduino / М.В. Момот. СПб.: БХВ-Петербург, 2017. 336 с.
- 31.Петин, В.А. Проекты с использованием контроллера Arduino. 2-е изд., перераб. и доп. / В.А Петин. СПб.: БХВ-Петербург, 2015. 457 с.
- 32. Монк Саймон [Monk Simon] Мейкерство. Arduino и Raspberry Pi. Управление движением, светом и звуком / Саймон Монк [Simon Monk]; пер. с англ. СПб.: БХВ-Петербург, 2017. 336 с.

- 33.Нестеренко, А.А. Мастерская знаний. Учебно-методическое пособие для педагогов / А.А. Нестеренко. М.: Book-in-file, 2013. 603 с.
- 34. Нестеренко, А.А. Ура! У нас проблемы! / А.А. Нестеренко. М.: Book-in-file, 2013. 34 с.
- 35. Нестеренко, А.А. Страна загадок. Книга о развитии творческого мышления у детей / А.А. Нестеренко. М.: ИГ «Весь», 2017. 192 с.
- 36.Овсяницкая, Л.Ю., Курс программирования робота EV3 в среде Lego Mindstorms EV3. 2-е изд., перераб. и доп / Л.Ю. Овсяницкая, Д.Н. Овсяницкий, А.Д. Овсяницкий. М.: Издательство «Перо», 2016. 300 с.
- 37.Овсяницкая, Л.Ю., Овсяницкий Д.Н., Овсяницкий А.Д., Алгоритмы и программы движения робота Lego Mindstorms EV3 по линии. / Л.Ю. Овсяницкая, Д.Н. Овсяницкий, А.Д. Овсяницкий. М.: Издательство «Перо», 2015. 168 с.
- 38.Овсяницкая, Л.Ю., Овсяницкий Д.Н., Овсяницкий А.Д., Пропорциональное управление роботом Lego Mindstorms EV3 / Л.Ю. Овсяницкая, Д.Н. Овсяницкий, А.Д. Овсяницкий. М.: Издательство «Перо», 2015. 188 с.
- 39. Овсяницкая, Л.Ю., Овсяницкий Д.Н., Овсяницкий А.Д., Машинное зрение в среде Lego Mindstorms EV3 с использованием камеры Pixy (CMUcam5) / Л.Ю. Овсяницкая, Д.Н. Овсяницкий, А.Д. Овсяницкий. Электронная книга, 2016. 168 с.
- 40. Панкратов, В.В. Автоматическое управление электроприводами: учебное пособие, ч. 1. Регулирование координат электроприводов постоянного тока / В.В. Панкратов. Новосибирск: НГУ, 2013. 200 стр.
- 41. Перельман, Я.И. Занимательная механика / Я.И. Перельман, под ред. И.Я. Штаермана. М.: Физматгиз, 1959. 184 с.
- 42. Перельман, Я.И. Занимательная физика. в 2 т. / Я.И. Перельман. М.: Юрайт, 2018. 192 с.

- 43. Платт Чарльз [Platt Charles] Электроника для начинающих. 2-е изд., перераб. и доп. / Чарльз Платт [Charles Platt]; пер. с англ. Санкт-Петербург: БХВ-Петербург, 2017 416 с.
- 44. Ричардсон Мэтт [Richardson Matt], Шон Уоллес Шон [Shawn Wallace]. Заводим Raspberry Pi / Мэтт Ричардсон [Matt Richardson], Уоллес Шон [Wallace Shawn]. пер. с англ. М.: Амперка, 2013. 230 с.
- 45. Сворень, Р.А. Электроника шаг за шагом: практическая энциклопедия юного радиолюбителя / Р.А. Сворень. М.: Детская литература, 1991. 446 с.
- 46. Сворень, Р.А. Электричество шаг за шагом / Р.А. Сворень. М.: фонд «Наука и жизнь», 2012-460 с.
- 47. Сворень, Р.А. Шаг за шагом. Транзисторы / Р.А. Сворень. М.: Детская литература, 1971-342 с.
- 48. Тарасов, Л.В. Механика. Продвинутый курс: Для старшеклассников и студентов / Л.В Тарасов. М.: Ленанд, 2017. 712 с.
- 49. Физическая смекалка: Занимательные задачи и опыты по физике для детей / Я.И. Перельман и др. М.: Омега, 1994. 256 с.
- 50. Хилькевич, С.С. Физика вокруг нас / С.С. Хилькевич. М.: Наука, 1985. 160 с.
- 51. Черниченко, Г.Т. Простая автоматика: рассказы об автоматики и автоматах-самоделках / Г.Т. Черниченко. Ленинград: Детская литература, 1989. 127 с.
- 52. Шелякин, В.П. Электрический привод: краткий курс 2-е изд., испр. и доп. / В.П., Шелякин, Ю. М. Фролов. М.: Юрайт, 2018. 273 с.
- 53.3лотин, Б.Л., Зусман, А.В. Месяц под звездами фантазии / Б.Л. 3лотин, А.В. Зусман— Кишенев: Лумина, 1988. — 276 с.
- 54. Шейнблит, А.Е. Курсовое проектирование деталей машин: Учеб. пособие. Изд-е 2-е, перераб. и дополн. / А.Е. Шейнблит. Калининград: Янтар. Сказ, 2002. 454 с.

- 55. Шичков, Л.П. Электрический привод. Учебник и практикум. 2 издание. / Л.П Шичков. М.: Юрайт, 2017 330 с.
- 56. Шойко, В.П. Автоматическое регулирование в электрических системах: учебное пособие / В.П. Шойко. Новосибирск: НГТУ, 2012. 195 с.
- 57. Ларионов, И.К. Защита интеллектуальной собственности / И.К. Ларионов, М.А. Гуреева, В.В. Овчинников и др.; под ред. И.К. Ларионова, М.А. Гуреевой, В.В. Овчинникова. М.: Издательско-торговая корпорация «Дашков и К°», 2018. 256 с.
- 58. Кузнецов, И.Н. Основы научных исследований / И.Н. Кузнецов М.: Издательско-торговая корпорация «Дашков и К°», 2017. 283 с.
- 59. Коршунов, Н.М. Право интеллектуальной собственности / Н.М. Коршунов, Н.Д. Эриашвили, В.И. Липунов и др.; ред. Н.Д. Эриашвили; под ред. Н.М. Коршунова. М. Юнити-Дана, 2015. 327 с.
- 60. Ардуино на русском. Информационно-справочный портал [Электронный ресурс] Режим доступа: URL: https://www.arduino.ru/
- 61. Arduino. Информационно-справочный портал [Электронный ресурс] URL: https://www.arduino.cc/
- 62. Raspberry pi. Информационно-справочный портал [Электронный ресурс] Режим доступа: URL: https://www.raspberrypi.org/
- 63. Механика в робототехнике. Информационно-справочный портал [Электронный ресурс] Режим доступа: URL: http://insiderobot.blogspot.com
- 64. Роботы, робототехника и микроконтроллеры. Информационносправочный портал [Электронный ресурс] — Режим доступа: URL: https://myrobot.ru.

Для обучающихся:

1. Бейктал Дж. Конструируем роботом на Arduino. Первые шаги. - М: Лаборатория Знаний, 2016 г.

- 2. Белиовская Л. Г. / Белиовский Н. А. Использование LEGO-роботов в инженерных проектах школьников. Отраслевой подход ДМК Пресс, 2016г.
- 3. Белиовская Л. Г. / Белиовский Н. А. Белиовская Л. Г. Роботизированные лабораторные работы по физике. Пропедевтический курс физики (+ DVD-ROM) ДМК Пресс, 2016 г.
- 4. Белиовская Л. Г. Узнайте, как программировать на LabVIEW. ДМК Пресс, 2014 г.
- 5. Блум Д. Изучаем Arduino. Инструменты и метод технического волшебства. БХВ-Петербург, 2016 г.
- 6. Монк С. Программируем Arduino. Основы работы со скетчами. Питер, 2016 г.
- 7. Петин В. Проекты с использованием контроллера Arduino (le и 2е издания). СПб: БХВ-Петербург, 2015 г.
- 8. Предко М. 123 Эксперимента по робототехнике. НТ Пресс, 2007г.
- 9. Соммер У. Программирование микроконтроллерных плат Arduino/Freeduino. СПб: БХВ-Петербург, 2012 г.
- 10. Филиппов С. Уроки робототехники. Конструкция. Движение. Управление. -Лаборатория знаний, 2017 г.
- 11. Филиппов С. А. Робототехника для детей и родителей. СПб.: Наука, 2013. 319 с.

Приложение 1

Календарный учебный график вводного уровня

№ п/п	Месяц	Число	Время проведения занятия	Форма занятия	Кол- во часов	Тема занятия	Место проведения	Форма контроля
1.	Сентябрь			Групповая	2	Вводное занятие. Техника безопасности. Введение в область робототехники.	Кабинет	Опрос
2.	Сентябрь			Групповая	2	Самая высокая башня. Спина к спине.	Кабинет	Игра
3.	Сентябрь			Групповая	2	Создание одномоторной тележки.	Кабинет	Практическая работа
4.	Сентябрь			Групповая	2	Знакомство с микроконтроллером, запуск демонстрационной программы, управление двигателями при помощи кнопок.	Кабинет	Практическая работа
5.	Октябрь			Групповая	4	Изучение интерфейса среды разработки ПО, подключение контроллера к ПК, знакомство с операторами.	Кабинет	Практическая работа
6.	Октябрь			Групповая	4	Сборка и программирование вентилятора.	Кабинет	Практическая работа
7.	Ноябрь			Групповая	4	Сборка и программирование движения базового робота.	Кабинет	Практическая работа
8.	Ноябрь			Групповая	4	Органы чувств робота	Кабинет	Практическая работа

9.	Декабрь		Групповая	4	Датчик ультразвука. Кейс «Пугливый	Кабинет	Практическая работа,
					робот»		кейс
10.	Декабрь		Групповая	2	Датчик касания. Кейс «Умное пианино»	Кабинет	Практическая работа, кейс
11.	Январь		Групповая	4	УЗ-датчик. Создание умного шлагбаума.	Кабинет	Практическая работа
12.	Январь		Групповая	2	Творческая защита проекта.	Кабинет	Выставка

Приложение 2

Оценочные материалы

Характеристика оценочных материалов (вводный уровень)

		Критерии оценивания	Dyyry y yaqyymm c ==/	Диагностический		
Планируемые результаты	Высокий уровень	Средний уровень	Низкий уровень	Виды контроля/ промежуточной аттестации	инструментарий (формы, методы, диагностики)	
Работа с контроллером	Самостоятельно умеет	С помощью педагога	С помощью педагога	Промежуточная	Опрос, наблюдение	
(блоком управления)	подключать датчики и	подключает датчики и	подключает датчики и	диагностика	беседа, выполнение	
конструктора Lego	моторы и ими	моторы и управляет	моторы и управляет		практических	
Mindstorm	управлять. Умеет	ими. Умеет	ими (в работах		заданий	
	подключать блок	подключать блок	учащегося имеются			
	управления к	управления к	небольшие			
	компьютеру.	компьютеру.	технические ошибки)			
			Умеет подключать			
			блок управления к			
			компьютеру.			
Сборка и	Самостоятельно (по	С помощью педагога	С помощью педагога	Промежуточная	Наблюдение,	
программирование	предложенной схеме)	подключает (по	подключает (по	диагностика	выполнение	
робототехнических	собирает	предложенной схеме)	предложенной схеме)		практических	
устройств	робототехническое	собирает	собирает		заданий.	
	устройство и	робототехническое	робототехническое			
	программирует его в	устройство и	устройство и			
	приложение EV3	программирует его в	программирует его в			
	Classroom	приложение EV3	приложение EV3			
		Classroom	Classroom (в работах			
			учащегося имеются			
			небольшие			

			технические ошибки)		
Конструирование и программирование роботов с сенсорными датчиками	Самостоятельно (по предложенной схеме) конструирует робота с датчиком ультразвука и программирует его в приложение EV3 Classroom. Самостоятельно (по предложенной схеме) конструирует робота с	С помощью педагога подключает (по предложенной схеме) конструирует робота с датчиком ультразвука и программирует его в приложение EV3 Classroom. С помощью педагога подключает (по	С помощью педагога подключает (по предложенной схеме) конструирует робота с датчиком ультразвука и программирует его в приложение EV3 Classroom (в работах учащегося имеются небольшие	Промежуточная диагностика. Итоговая аттестация	Наблюдение, выполнение практических заданий и кейсов.
	датчиком касания и программирует его в приложение EV3 Classroom.	предложенной схеме) конструирует робота с датчиком касания и программирует его в приложение EV3 Classroom.	технические ошибки). С помощью педагога подключает (по предложенной схеме) конструирует робота с датчиком касания и программирует его в приложение EV3 Classroom (в работах учащегося имеются небольшие технические ошибки).		