АВТОНОМНАЯ НЕКОММЕРЧЕСКАЯ ОРГАНИЗАЦИЯ ДОПОЛНИТЕЛЬНОГО ОБРАЗОВАНИЯ «ДЕТСКИЙ ТЕХНОПАРК «КВАНТОРИУМ» В ГОРОДЕ НЕВИННОМЫССКЕ»

Принята на заседании педагогического совета от «<u>29</u>» <u>августа</u> 20<u>25</u> года Протокол № <u>1</u>

ДОПОЛНИТЕЛЬНАЯ ОБЩЕРАЗВИВАЮЩАЯ ПРОГРАММА

естественно-научной направленности

«Наноквантум»

(название программы)

Уровень программы: <u>углубленный</u> **Возрастная категория:** от <u>14</u> до <u>18</u> лет

Состав группы: до <u>12</u> человек Срок реализации: 1 год – 144 ч

> Автор-составитель: Сыпко К.С., педагог дополнительного образования

г. Невинномысск, 2025 год

Содержание

l.	Информационная карта программы	3
2.	Пояснительная записка	4
3.	Цели и задачи программы	8
4.	Содержание программы	10
5.	Содержание учебно-тематического плана	12
6.	Ожидаемые результаты и способы их проверки	17
7.	Способы и формы проверки результатов освоения программы	18
8.	Методическое обеспечение	19
9.	Материально-техническое обеспечение	21
	Список литературы	23

1 Информационная карта программы

Наименование учреждения	Автономная некоммерческая организация
Transferred of the supplement	дополнительного образования «Детский технопарк
	«Кванториум» в г. Невинномысске»
Адрес учреждения	Ставропольский край, г. Невинномысск, ул. Белово 4Б
ФИО ПДО	Сыпко Ксения Сергеевна
Название программы	«Наноквантум. Углубленный модуль»
Тип программы	Дополнительная общеразвивающая
Направленность	Естествино-научная
Срок реализации	1 год
Общий объем программы в часах	144
Целевая аудитория обучающихся	14-18 лет
Аннотация программы	Программа выполняет как образовательную, так и профориентационную роль и позволяет учащемуся приобрести базовые компетенции в области нанотехнологии и смежных наук и направлений. Программа направления Наноквантум охватывает области, связанные с химией, химической технологией, материаловедением, медициной, биотехнологиями, электроникой и т.д. Программа позволяет повысить интерес обучающихся к изучению предметов химического и естественнонаучного профиля через освоение ряда дисциплин, не рассматриваемых в базовом школьном курсе (физическая химия, материаловедение, кристаллография, технология пленочных покрытий), а также через ведение учебно-исследовательской деятельности в рамках этих дисциплин. Образовательная программа включает использование современного оборудования. Обучающиеся знакомятся со свойствами наноматериалов, особенностями их получения, применением наноматериалов в промышленности и в быту.
Планируемые результаты (компетенции)	В ходе учебного процесса учащиеся будут развивать следующие компетенции: умение находить нужную информацию; выработают критичность мышления, необходимую для оценки найденной информации; коммуникативность, умение работать в команде; умение решать поставленные задачи и находить оптимальный путь для их решения; научатся работать на микроскопическом и весовом оборудовании; лабораторных установках.

2 Пояснительная записка

Дополнительная общеобразовательная общеразвивающая программа «Наноквантум. Углубленный модуль» разработана в соответствии с:

- Федеральным Законом Российской Федерации от 29.12.2012 г. № 273 «Об образовании в Российской Федерации» (в ред. Федеральных законов от 03.07.2016 № 313-Ф3, от 31.07.2020 № 304-Ф3, от 14.07.2022 № 295-Ф3);
- Распоряжением Правительства Российской Федерации от 04.09.2014 г. № 1726-р «Концепция развития дополнительного образования детей»;
- Постановлением Правительства РФ от 18.09.2020 г. № 1490 «О лицензировании образовательной деятельности»;
- Постановлением Главного государственного санитарного врача Российской Федерации от 28.09.2020 г. № 28 «Об утверждении санитарных правил СП 2.4. 3648-20 «Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодежи»;
- Приказом Министерства образования Ставропольского края от 16.02.2023 г. № 253-пр «Об утверждении типовых моделей»;
- Приказом Министерства просвещения РФ от 27.07.2022 г. № 629 «Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам»;
- Приказом Министерства просвещения РФ от 03.09.2019 г. № 467 «Об утверждении Целевой модели развития систем дополнительного образования детей»;
- Приказом Минобрнауки России от 23.08.2017 г. № 816 «Об утверждении Порядка применения организациями, осуществляющими образовательную деятельность, электронного обучения, дистанционных образовательных технологий при реализации образовательных программ»;

- Приказом Министерства науки и высшего образования Российской Федерации, Министерства просвещения Российской Федерации от 05.08.2020 г. № 882/391 «Об организации и осуществлении образовательной деятельности при сетевой форме реализации образовательных программ»;
- Письмом Минобрнауки России от 18.11.2015 г. № 09-3242 «О направлении информации» (вместе с «Методическими рекомендациями по проектированию дополнительных общеразвивающих программ.
- Уставом **AHO** ДΟ «Детский технопарк Кванториум». Дополнительная общеразвивающая программа (далее –программа) имеет научно-техническую направленность и направлена на получение обучающимися теоретических знаний в области нанотехнологии и химии, а также практических навыков в области создания наноматериалов. Программа составлена на основании методических материалов ФГАУ «Фонд новых форм развития образования», предназначенных ДЛЯ использования наставниками сети детских технопарков «Кванториум», и

в соответствии с основными нормативными документами.

Актуальность программы обусловлена интересом к наноразмерным системам, то есть системам, один из компонентов которых имеет размер, лежащий в диапазоне 1-100 нм. Вопросы создания и применения наноразмерных материалов становятся все более актуальными по мере развития тенденции минимизации технических И информационнотехнических систем и обретения ими принципиально новых функциональных характеристик. На данном этапе технического развития чрезвычайно важными и перспективными являются технологии синтеза и производства наноматериалов. Накопившийся опыт ПО синтезу наночастиц созданию материалов на их основе, а также прогресс методов и инструментов их диагностики позволяет провести обобщение и наметить пути поиска новых решений в этой инновационной области знаний.

В рамках обучения у обучающихся формируются знания о методах и технологиях получения нанопорошков, нанослоев, в основе которых

лежат различные физические и физико-химические процессы. В настоящее время в мире происходит технологическая революция, связанная с развитием и выходом на рынок нанотехнологий, «умных» материалов, новых приборов и лекарственных веществ, инновации в который могут дать новые знания, достижения во многих отраслях науки и промышленности. Для этого обучающимся предлагается освоить основы нанотехнологии через лекционные, практические и лабораторные занятия, а также через проектную деятельность. В процессе проведения занятий обучающиеся должны получить навыки поиска информации по интересующей тематике, решения поставленных задач, а также выполнить проектную работу по выбранной тематике. В процессе получения знаний обучающиеся научатся правильно ставить цели, планировать наиболее рациональные пути их достижения, выработают навыки самоорганизации и работы в коллективе, необходимые для решения поставленных задач, научатся достигать практически значимых общественно полезных результатов, применять инженерные подходы в решении поставленных задач.

Направленность образовательной программы – естественнонаучная.

Нанотехнологии — активно развивающиеся направление современной научной мысли. Разработки в данной области позволяют решать широкий круг вопросов, связанных с созданием новых материалов, обладающих необычными полезными свойствами, в том числе лекарственных препаратов и биоматериалов, микроэлектронных компонентов; с использованием солнечной энергии; с охраной окружающей среды и здоровья человека; с повышением эффективности сельскохозяйственного и промышленного производства; с освоением глубин океана и космического пространства.

Основные принципы, лежащие в основе реализации программы, следующие:

1) Принцип активности учащегося, личностно-ориентированный подход.

Ответственность за итоги работы по программе возлагается не только на педагогов, но и на обучающихся. В рамках реализации образовательного процесса создается свобода выбора индивидуальной образовательной траектории, которая реализуется за счет индивидуальных занятий по выбранному направлению проектной деятельности, выполнения индивидуальных или групповых заданий.

2) Принцип системности.

Обучение происходит в рамках вытягивающей образовательной модели, когда на каждом этапе учащемуся сообщается минимально необходимый для перехода на следующий уровень объем знаний, умений и навыков.

3) Компетентностный подход и ориентирование на практическую деятельность.

Программа состоит из последовательности кейсов — проблемных ситуаций, в ходе решения которых учащийся приобретает компетенции двух типов. Гибкие навыки (soft skills) — универсальные компетенции, которые будут полезны в любой области деятельности (поиск и анализ информации, коммуникативность, умение работать в команде и т. д.). Профессиональные навыки — конкретные знания и навыки, а также методологическая база из данной области деятельности.

4) Принцип вариативности.

Содержание программы, в частности последовательность тем занятий и кейсов может варьироваться в зависимости от текущей педагогической ситуации. Для более качественного преподнесения материала к ведению некоторых занятий могут привлекаться узкие специалисты из реального сектора экономики, ученые, госслужащие или преподаватели вузов.

5) Принцип тьюторского сопровождения обучения.

Взаимоотношения обучающихся и педагогов строятся по принципу тьюторства, а не менторства. Под тьюторством понимается такое сопровождение образовательного процесса, при котором реализуется

индивидуальная образовательная траектория для каждого учащегося с учетом его психологических особенностей, и отдельное внимание уделяется воспитательной функции.

6) Принцип коммуникативной направленности и группового решения поставленных задач.

В ходе освоения программы упор сделан на работу в малых группах, что, с одной стороны, обеспечит вовлеченность каждого в процесс, а с другой стороны, будет способствовать развитию навыков командной работы. Любые нестандартные учебные ситуации разрешаются путем диалога.

7) Принцип комплексной реализации задач обучения.

Программа не разделена по типу задач на образовательные, развивающие и воспитательные блоки. Каждое занятие способствует решению каждого типа задач.

3 Цели и задачи программы

Цель программы: привлечь обучающихся к исследовательской, изобретательской, научной и инженерной деятельности, создание условий для овладения школьниками современными представлениями о наноматериалах и наносистемах, а также возможностями их использования при создании наукоемкой продукции.

Обоснованность в изучении программы вызвана следующими значительной наукоемкостью процессов разработки причинами: изготовления продукции из наноструктурированных материалов; новизной научных разработок и большими рисками при оценке эффективности их использования создания конкурентоспособной ДЛЯ нанопродукции; необходимостью отслеживать постоянно изменяющуюся конъюнктуру на рынке нанопродукции и нанотехнологий.

Задачи программы (углубленный уровень):

Личностные:

- формирование общественной активности личности, гражданской позиции;
- развитие потребности в саморазвитии, самостоятельности,
 ответственности, активности;
 - формирование культуры общения и поведения в социуме.
- развитие умений аргументировано обосновывать и отстаивать высказанное суждение, оценивать и принимать суждения других.

Метапредметные:

- уверенная ориентация в различных отраслях современного естествознания;
- приобретение способности быстрого освоения новых инструментальных и технических средств;
- формирование у школьников системных знаний о методах и технологиях получения наноразмерных систем и их практической

– формирование у школьников системных знаний о физических основах, инструментальных принципах и диагностических возможностях методов сканирующей зондовой микроскопии, спектроскопии и литографии (СЗМ СЛ), являющегося одним из базовых методов современной нанодиагностики.

Образовательные (предметные):

- знакомство школьников со знаниями в области нанотехнологий;
- освоение школьниками терминологии и основных понятий,
 связанных с наноматериалами и нанотехнологиями;
- осмысление школьниками основных отличительных особенностей материалов, находящихся в наносостоянии;
- развитие познавательного интереса к проектной деятельности,
 решению изобретательских задач, научно-техническому творчеству;
- знакомство с практической математикой; изучение основ комбинаторики, теории множеств, математической логики; изучение и расчет теории вероятности; освоение теории графов и поиска кратчайшего пути;
- формирование умений проведения математических расчетов с помощью программ.

4 Содержание программы

Наименование темы	Теоретическая часть	Практическая часть
Вводное	Цели и задачи программы.	Экскурсия по технопарку
занятие	Техника безопасности в	
	лаборатории Наноквантума	
Модуль 1	Понятие нанообъекта,	Кейс № 1. «Определение различия
«Введение в	наноматериала,	свойств макро и нанообъектов на
нанотехнологии	нанотехнологии. История	примере железа».
»	развития. Физические	Кейс № 2. «Изучение бактерицидных
24 часа	причины специфики	свойств на примере наночастиц
16/8	наночастиц и	серебра».
	наноматериалов.	
	Классификация	
	наноматериалов. Области	
	применения наноматериалов. Геометрическое строение	
	Геометрическое строение наноструктур. Механические	
	свойства. Термические	
	свойства. Реакционная	
	способность. Магнитные	
	свойства. Оптические	
	свойства. Каталитические	
	свойства.	
Модуль 2	Газофазный синтез.	Кейс № 3. «Получение магнитных
«Основные	Плазмохимический синтез.	жидкостей, состоящих из наночастиц
методы и	Осаждение из коллоидных	магнетита Fe_3O_4 ».
технологии	растворов. Термическое	Кейс № 4. «Методы получения
производства	разложение и	наночастиц из коллоидных растворов.
наноструктурир	восстановление.	Получение наночастиц диоксида
ованных	Детонационный синтез.	марганца, йодида серебра».
материалов»	Механосинтез.	
24 часа	Кристаллизация.	
14/10	Электрохимические методы.	
	Литографические методы.	
Модуль 3	Устройство и принцип	Кейс № 5. «Изготовление зондов для
«Основы	работы сканирующего	сканирующей зондовой
сканирующей	зондового микроскопа.	микроскопии».
зондовой	Литография. Получение	Кейс № 6. «Исследование
микроскопии,	навыков работы на	поверхности твердых тел методом
спектроскопии	сканирующем зондовом	сканирующей зондовой
и литографии»	микроскопе.	микроскопии».
24 yaca		Кейс № 7. «Создание микро и
12/12		наноструктур методом литографии».
Модуль 4	Оптическая спектроскопия.	Кейс № 8. Определение зависимости
«Основные	Инфракрасная	скорости оседания микро и
методы	спектроскопия. Резонансные	наночастиц от их размера».
нанодиагностик	методы. Методы атомно-	
и материалов»	силовой микроскопии.	
24 часа	Просвечивающая и	

10/6	T	
18/6	сканирующая электронная	
	микроскопия. Рентгеновские	
	дифракционные методы.	
	Седиментация.	
	Адсорбционные методы.	
Итоговый	Проект. Жизненный цикл	Проектная работа. Формулировка
доклад	проекта. Позиции в	темы своего проекта.
44 часа	проектной команде и вокруг нее. Идеяпроекта.	Особенности инженерных проектов. Шаги в инженерных проектах по
4/20/20	Что такое	созданию нанокомпозитных
., 20, 20	проблема?Постановка	материалов.
	проблемы. Тематизация от	Исследовательские проекты: тема,
	проблемы презультатов.	проблема, гипотеза.
	Специфика определения	Исследовательские проекты на стыке
	темы в проектах разных	химии, биологии и физики.
	типов. Образовательные	Математические методы обработки
	результаты в проектах.	экспериментальных результатов.
	Эксперимент в	chemophinical numbers
	исследовательском проекте в	
	предметной области	
	нанотехнологии. Обработка и	
	представление результатов	
	Подготовка к докладу:	
	Защита: публичное	
	_	
	выступление с	
	демонстрацией.	

5 Содержание учебно-тематического плана

Данная образовательная программа изучается в течение одного учебного года.

Название программы: «Наноквантум (углубленный модуль).

Возраст- 14-18 лет.

Уровень: Базовый. Срок реализации: 36 недель - 144 часа, 4 часа в неделю.

Наименование модулей	Общее количество	В том числе		
	часов	теоретических	практических	проектных
Вводное занятие. Цели и задачи программы. Техника безопасностив лаборатории Наноквантума	4	4	0	0
Модуль 1. Введение в нанотехнологии	24	16	8	0
Модуль 2. Основные методы и технологии производства наноструктурированных материалов	24	14	10	0
Модуль 3. Основы сканирующей зондовой микроскопии, спектроскопии и литографии	24	12	12	0
Модуль 4. Основные методы нанодиагностики материалов.	24	18	6	0
Итоговый доклад	44	4	20	20
Итого:	144	68	56	20

Календарный учебный график

Месяц	Название разделов и тем	Форма занятия	Кол	ичество	часов
			всего	теория	практика
Сентябрь	Вводное занятие. Цели и задачи программы. Техника безопасности в химической лаборатории		4	4	0
	Модуль 1. Введен	ние в нанотехнолог	ии		
Сентябрь- Октябрь	Понятие нанообъекта, наноматериала,	лекция, практическое	10	10	
	нанотехнологии. История развития. Физические причины специфики наночастиц и наноматериалов. Классификация наноматериалов. Области применения наноматериалов.	занятие, самостоятельная работа			
	Кейс №1. «Определение различия свойств макро и нанообъектов на примере железа».	самостоятельная работа	4		4
	Геометрическое строение наноструктур. Механические свойства. Термические свойства. Реакционная способность. Магнитные свойства. Оптические свойства. Каталитические свойства.	лекция, практическое занятие, самостоятельная работа	8	8	
	Кейс №2. «Изучение бактерицидных свойств на примере наночастиц серебра».		4		4
	Всего часов:		24	16	8
Модул	ть 2. Основные методы и техноло	гии производства н ериалов	анострун	стурирова	анных
Октябрь-	Газофазный синтез.	лекция,			
Ноябрь	Плазмохимический синтез. Осаждение из коллоидных растворов.	практическое занятие, самостоятельная работа	6	6	
	Кейс №3. «Получение магнитных жидкостей, состоящих из наночастиц магнетита Fe ₃ O ₄ ».	*	6		6
	Термическое разложение и восстановление.	лекция,	4	4	

	Детонационный синтез. Механосинтез.	практическое занятие, самостоятельная			
	Кейс №4. «Методы получения наночастиц из коллоидных растворов. Получение наночастиц диоксида марганца, йодида серебра».	работа	4		4
	Кристаллизация. Электрохимические методы. Литографические методы.	лекция, практическое занятие, самостоятельная работа	4	4	
	Всего часов:	•	24	14	10
Модуль	3. Основы сканирующей зондово	й микроскопии, спе	ектроско	пии и лит	ографии
Ноябрь- Декабрь	Устройство и принцип работы сканирующего зондового микроскопа.	·	6	6	
	Кейс №5. «Изготовление зондов для сканирующей зондовой микроскопии».		4		4
	Кейс №6. «Исследование поверхности твердых тел методом сканирующей зондовой микроскопии».	работа	4		4
	Литография. Получение навыков работы на сканирующем зондовом микроскопе.	практическое	6	6	
	Кейс №7. «Создание микро и наноструктур методом литографии».	самостоятельная	4		4
	Итого часов:		24	12	12
	Модуль 4. Основные метод	ы нанодиагностики	материа	лов	ı
	Оптическая спектроскопия. Инфракрасная спектроскопия. Резонансные методы. Методы атомно-силовой микроскопии. Просвечивающая и сканирующая электронная	Лекция, практическое занятие, самостоятельная работа	12	12	

	микроскопия. Рентгеновские				
	дифракционные методы.				
	дифракционные методы.				
	Седиментация.	Лекция,	2	2	
		практическое			
		занятие,			
		•			
		самостоятельная			
		работа			
	Кейс №8. Определение	самостоятельная	6		6
	зависимости скорости оседания	работа			
	микро и наночастиц от их	_			
	размера».				
	Адсорбционные методы.	Лекция,	4	4	
	Теоретические основы	практическое			
	седиментационного метода	занятие,			
	анализа. Способы определения	•			
	скорости седиментации.	самостоятельная			
		работа			
	Итого часов:		24	18	6
Март-Май	•	Лекция,	4	4	
	проекта. Позиции в проектной	практическое			
	команде и вокруг нее. Идея	занятие,			
	проекта.	самостоятельная			
	Что такое проблема?				
		работа	• •		• •
	Проектная работа.	Практическое	20		20
	Формулировка темы своего	занятие,			
	проекта.	самостоятельная			
	Особенности инженерных	работа			
	проектов. Шаги в инженерных	1			
	проектах по созданию				
	нанокомпозитных материалов.				
	Исследовательские проекты:				
	тема, проблема, гипотеза.				
	Исследовательские проекты на стыке химии, биологии и				
	стыке химии, биологии и физики.				
	физики. Математические методы				
	обработки экспериментальных				
	результатов				
	Постановка проблемы.	Практическое	20		20
	проолемы. Тематизация от проблемы и	-	20		20
	тематизация от проолемы и результатов.	занятие,			
	результатов. Специфика определения темы в	самостоятельная			
	проектах разных типов.	работа			
	Образовательные результаты в				
	проектах.				
	Эксперимент в				
	исследовательском проекте в				
	предметной прескто в				
	± ' '				
	_				
	предметнои ооласти нанотехнологии. Обработка и представление результатов				

Подготовка к докладу: Защи	a:				
публичное выступление	c				
демонстрацией.					
Итого часов:		44	4	40	
ИТОГО:		144	68	76	

[—] При подготовке доклада или проекта в малой группе или индивидуально в практической части обучающиеся выполняют экспериментальную часть проекта, которая включает в себя проведение эксперимента, химических опытов, тестирования полученных материалов и др.

6 Ожидаемые результаты и способы их проверки

Образовательная программа дает возможность каждому обучающемуся овладеть заявленными компетенциями в той мере, в которой это для него приемлемо. В процессе освоения программы у обучающихся формируются и развиваются следующие компетенции:

Личностные:

- коммуникативные компетентности в общении и сотрудничестве со сверстниками и взрослыми в процессе образовательной и соревновательной деятельности.
- мотивация к обучению, готовность и способность к саморазвитию и самообразованию на основе мотивации к обучению и познанию;

Метапредметные:

- умение самостоятельно планировать пути достижения целей, в том числе альтернативные, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;
- умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией.

Предметные:

- освоение техник микроскопии;
- понимание роли естественных наук и научных исследований в современном мире;
- знания о различных направлениях развития современной химии и нанотехнологий, а также смежных отраслей знания;
- получение практических навыков работы в современной химической лаборатории.

7 Способы и формы проверки результатов освоения программы

Виды контроля:

- вводный, который проводится перед началом работы и предназначен для закрепления знаний, умений и навыков по пройденным темам;
- текущий, проводимый в ходе учебного занятия и закрепляющего знания по данной теме;
 - –итоговый, проводимый после завершения всей учебной программы.Формы проверки результатов:
 - наблюдение за детьми в процессе работы;
 - соревнования;
 - конкурсы;
 - индивидуальные технические проекты;
 - коллективные технические проекты.

Формы подведения итогов:

- выполнение практических заданий;
- творческое задание.

8 Методическое обеспечение

Образовательная программа интегрирует себе достижения В современных направлений в области химии и нанотехнологий. Программой предусмотрено проведение комбинированных занятий: занятия состоят из теоретической, практической частей, проектной a также также деятельности. При проведении занятий используют различные формы: лекции, практические работы, беседы, конференции, конкурсы, проектная и Занимаясь исследовательская деятельность. ПО данной программе обучающиеся должны получить передовые знания в области нанотехнологий, а также смежных областях; практические навыки работы на разных видах современного оборудования; умение планировать И реализовывать конкретные исследовательские и прикладные задачи, понимать роль научных исследований современном мире И значимость международного сотрудничества. При проведении занятий используются приемы и методы теории решения изобретательских задач, развития критического мышления и др.

Для обучающихся по данной программе используется: демонстрационный материал (презентации), электронные образовательные ресурсы https://stepik.org/course/49565/promo / (Наноструктурные средства доставки лекарственных веществ), и др., а также раздаточный материал и наглядные пособия.

При реализации программы используется сочетание аудиторных и внеаудиторных форм образовательной работы. Наряду с традиционными используются активные и интерактивные методы и приемы, способствующие развитию мотивационной основы познавательной деятельности в процессе реализации программы. Организация самостоятельной работы обучающихся осуществляется как под руководством педагога, так и с использованием модели внутригруппового шефства и наставничества. Педагог организует получение обратной связи о текущих результатах образовательной деятельности всех обучающихся, на основе их анализа своевременно

корректирует образовательные подходы в направлении углубления дифференциации и индивидуализации.

9 Материально-техническое обеспечение

Наименование модулей	Наименование обязательного оборудования
Модуль 1. Введение в нанотехнологии	Прямой оптический микроскоп Би Оптик – 1 шт. Фотоаппарат Canon EOS 1200D – 1 шт.
Модуль 2. Основные методы и технологии производства наноструктурированных материалов	Аналитические весыНR-100AZG — 1 шт.; Прецизионные весы DL-120/A&D DX-120 /CAS CUW-420S /Pioneer PA114 — 1 шт.; Диспергатор универсальный IKA Ultra Turrax Tube Drive /Ultra-Turrax Tube Drive control — 1 шт.; Дистиллятор лабораторный АЭ-4/8 /Liston A1104 — 1 шт.; Магнитная мешалка с подогревом IKA HS4 /C-MAG HS 7 — 1 шт.; Нагревательная плитка IKA HP7 /IKA C-MAG HP 10 — 1 шт.; Водяная баня Тэрмекс ЛБ32 III — 1 шт.; Сушильный шкаф LF-25/350-GS1 // LF-25/350-VS1 //Binder ED 53 — 1 шт.; Сосуд Дьюара СДП-16 /СДС-35М — 1 шт.; Муфельная печь LF-5/11-G1 //SNOL 8,2/1100 //МИМП-10М — 1 шт.; Ультразвуковая мойкаVGT-1620QTD/ПСБ-2828-05/ Elma S10/ Elmasonic P30H — 1 шт.; Центрифуга IKA mini G/ Eppendorf MiniSpin plus — 1 шт.; Установка для центрифужного формирования покрытий KW-4A. /SpinNXG. /Ossila (модель Spin Coater KW-4A) — 1 шт.
Модуль 3.Основы сканирующей зондовой микроскопии, спектроскопии и литографии	Сканирующий зондовый микроскоп с измерительной головкой, работающей с зондовыми датчиками на основе вольфрамовой иглы и на основе кремниевого кантилевера NanoTutor – 1 шт.; Автоматизированная установка изготовления нанозондов с электронным программатором технологических режимов. Etchenger – 1 шт.;
Модуль 4. Основные методы нанодиагностики материалов	Штангенциркуль ADA Mechanic 150 PRO – 1 шт.; Электронный термометр HI98501 – 2 шт.; Ph-метр карманный HI98103 – 2 шт.; Кондуктометр карманный Hanna PWT (HI 98308) – 1 шт.; Aвтоматические микропипетки переменного объёма, мкл: 0,5–10 Biohit Sartorius mLINE – 1 шт.; Aвтоматические микропипетки переменного объёма, мкл: 10–100 Biohit Sartorius mLINE – 1 шт.; Aвтоматические микропипетки переменного объёма, мкл: 100–1000 Biohit Sartorius mLINE – 1 шт.; Aвтоматические микропипетки постоянного объёма, мкл: 5 Sartorius – 2 шт.; Aвтоматические микропипетки постоянного объёма, мкл: 10 Sartorius – 2 шт.; Aвтоматические микропипетки постоянного объёма, мкл: 100 Sartorius – 2 шт.; Aвтоматические микропипетки постоянного объёма, мкл: 100 Sartorius – 2 шт.; Aвтоматические микропипетки постоянного объёма, мкл: 1000 Sartorius – 2 шт.;

Вискозиметр 0,34 ВПЖ 2-0,34 — 2 шт.; Вискозиметр 0,56 ВПЖ 2-0,56 — 2 шт.; Набор ареометров АОН-1 — 1 шт.; Психрометр гигрометр тип 2 ВИТ-2 — 1 шт.; Термогигрометр электронный Testo 610 — 1 шт.; Манометр АКТАКОМ АТТ-4007 — 1 шт.; Система активной виброзащиты DVIA-T — 1 шт.

Список литературы

- Федеральный закон Российской Федерации от 29 декабря 2012 г.
 № 273-ФЗ «Об образовании в Российской Федерации».
- 2. Концепция развития дополнительного образования детей (утверждена распоряжением Правительства Российской Федерации от 4 сентября 2014 г. № 1726-р).
- 3. Порядок организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам (утвержден Приказом Минобрнауки России от 29 августа 2013 г. N 1008.
- 4. Письмо Минобрнауки России от 11 декабря 2006 г. № 06-1844 «О примерных требованиях к программам дополнительного образования детей».
- 5. Постановление Главного государственного санитарного врача Российской Федерации от 4 июля 2014 г. №41 г. Москва "Об утверждении СанПиН 2.4.4.3172-14 «Санитарно-эпидемиологические требования к устройству, содержанию и организации режима работы образовательных организаций дополнительного образования детей».
- 6. Устав АНО ДО «Детский технопарк «Кванториум» в г.Невинномысске»
- 7. Акентьева Л. Р., А. В., Кисина Т. С. Педагогический контроль в дополнительном образовании (метод. рекомендации педагогам доп. образования). Ярославль: ОЦДЮ, 1997. 48 с.
- 8. Белухин Д. А. Основы личностно-ориентированной педагогики. М.: МПСИ, 2006. 310 с.
- 9. Бережнова Е. В. Основы учебно-исследовательской деятельности студентов: учебник / Е. В. Бережнова, В. В. Краевский. М.: Академия, 2005. 128 с.
- 10. Беспалько В. П. Педагогика и прогрессивные технологии обучения.– М.: Педагогика, 2009.

- 11. Борытко Н.М. Диагностическая деятельность педагога / Под ред. В.А. Сластенина, И.А. Колесниковой. М.: Академия, 2008. 288 с.
- 12. Бурлачук Л.Ф., Морозов С.М. Словарь-справочник по психодиагностике. СПб.: Питер, 2006. 528 с.
- 13. Дополнительное образование как система современных технологий сохранения и укрепления здоровья детей. Учебное пособие. /Под общей ред. Н.В. Сократова. Оренбург: Изд. ОГПУ, 2003. 260 с.
- 14. Дружинин В.Н. Психология общих способностей. СПб.: Питер, 2006. 249c.
- 15. Жарова Л.В. Учить самостоятельности. М.: Просвещение, 1993. 205 с.
- 16. Запятая О.В. Формирование и мониторинг общих умений коммуникации учащихся: методическое пособие. Красноярск: Торос, 2007. 136 с.
- 17. Золотарёва А.В. Дополнительное образование детей. Методика воспитательной работы. Ярославль: Академия развития, 2004. 304 с.
- 18. Иванчикова Т.В. Речевая компетентность в педагогической деятельности: учебное пособие. М.: ФЛИНТА: Наука, 2010. 224 с.
- 19. Колесникова И.А. Коммуникативная деятельность педагога. Учебное пособие для студентов высших педагогических учебных заведений /И.А. Колесникова под ред. В.А. Сластёнина. М.: Академия, 2007. 336 с.
- 20. Кэнфилд Джек, Сикконэ Фрэнк. 101 совет о том, как повысить самооценку и чувство ответственности у школьников. М.: УРСС, 1997. 360 с.
- 21. Лебединцев В.Б. Методика проектирования учебных занятий в разновозрастном коллективе // Школьные технологии. -2008. -№ 2. С. 99 108.
- 22. Мижериков В.А., Юзефавичус Т.А. Введение в педагогическую деятельность. М.: Педагогическое общество России, 2005. 352 с.

- 23. Морева Н.А. Современная технология учебного занятия. М.: Просвещение, 2007. 158 с.
- 24. Немов Р.С. Психология: Учеб. для студентов высш. пед. учеб. заведений: В 3 кн. Кн. 1. Общие основы психологии. М.: Просвещение: Владос, 1997. 688с.
- 25. Немов Р.С. Психология: Учеб. для студентов высш. пед. учеб. заведений: В 3 кн. Кн. 2. Психология образования. М.: Просвещение: Владос, 1998. 608 с.
- 26. Немов Р.С. Психология: Учеб. для студентов высш. пед. учеб. заведений: В 3 кн. Кн. 3. Психодиагностика. Введение в научное психологическое исследование с элементами математической статистики. М.: Просвещение: Владос, 1999. 632 с.
- 27. Организация научно-исследовательской деятельности: Методическое пособие для учащихся. Ярославль: Провинциальный колледж, 2003. 16 с.
- 28. Педагогические технологии: Учебное пособие для студентов педагогических специальностей / Под общей ред. В.С. Кукушина. М.: ИКЦ «МарТ»; Ростов н/Д". Издательский центр «МарТ», 2004. 336 с. (Серия «Педагогическое образование»)
- 29. Педагогические технологии: учебное пособие / сост. Т.П. Сальникова. учебное пособие / Г.Ю. Ксензова. Москва: Педагогическое общество России, 2005. М.: ТЦ Сфера, 2007. 128 с.
- 30. Психология подростка. Практикум. Тесты, методики для психологов, педагогов, родителей. / Под ред. члена-корреспондента РАО А.А. Реана (серия «Мэтры психологии»). СПб.: прайм-ЕВРО-ЗНАК, 2003. 128 с.
- 31. Роль диагностики в педагогическом процессе учреждений дополнительного образования. К курсу повышения квалификации специалистов УДО «Актуальные проблемы аттестации». Раздел «Диагностика». СПб.: Речь, 2001. 50 с.

- 32. Рюкбейль Д.А. Экология и мировоззрение. / Авторская программа по экологическому образованию и воспитанию детей среднего школьного возраста. М.: ИСАР, 1998. 36 с.
- 33. Селевко Г.К. Современные образовательные технологии: Учебное пособие. М.: Народное образование, 2008. 256 с.
- 34. Соловьева К.Н. Основы подготовки к научной деятельности и оформление ее результатов. М: Академия, 2005. 100 с.
- 35. Туник Е.Е. Модифицированные креативные тесты Вильямса. СПб.: Речь, 2003. 96 с.
- 36. Шевандрин Н.И. Основы психологической диагностики: Учеб. для студ. высш. учеб. завед.: в 3 ч. М.: Владос, 2003. 880 с.
- 37. Фабер А. Как говорить, чтобы подростки слушали, и как слушать, чтобы подростки говорили. М.: Эксмо, 2013.
- 38. Философские основания экологического образования в эпоху нанотехнологий / Отв. ред. И.К. Лисеев. М.: Канон+ РООИ «Реабилитация», 2014. 328 с.
- 39. Шаталова Л.И. Методологическая культура научного исследования: Практ. пособие для аспирантов. М.: ЗАО «Оперативное тиражирование», 2008.-64 с.
- 40. Эндрюськина Л.Н. Химический аспект экологических знаний./Образовательная программа для учреждений дополнительного образования.– М.: ИСАР, 1998. 28 с.
- 41. Гусев А.И., «Наноматериалы, наноструктуры, нанотехнологии», М.: ФИЗМАТЛИТ, 2007. 416 с.
- 42. Суздалев И.П., «Нанотехнология: физико-химия нанокластеров, наноструктур и наноматериалов», М.: КомКнига, 2006. 592 с.
- 43. «Новые материалы», под редакцией Ю.С. Карабасова, М.: МИСИС, $2002.-736~\mathrm{c}.$

- 44. «Словарь нанотехнологических и связанных с нанотехнологиями терминов», под редакцией С.В. Калюжного, М.: ФИЗМАТ-ЛИТ, 2010. 528 с.
- 45. Гудилин Е.А., «Богатство Наномира. Фоторепортаж из глубин вещества», под редакцией Ю.Д.Третьякова, М.: БИНОМ. Лаборатория знаний, 2010. 171 с.
- 46. Деффейс К., Деффейс С., «Удивительные наноструктуры», перевод под редакцией Л.Н.Патрикеева, М.: БИНОМ. Лаборатория знаний, 2011.-206 с.
- 47. В.Л. Миронов, «Основы сканирующей зондовой микроскопии», М.: Техно, 2009. 144 с.
- 48. Фехльман Б., «Химия новых материалов и нанотехнологий», перевод под редакцией Ю.Д. Третьякова и Е.А. Гудилина, Долгопрудный: Издательский Дом «Интеллект», 2011. 464 с. Ч. Пул-мл., Ф Оуэнс, «Нанотехнологии», М.: Техносфера, 2006. 327 с.
 - 49. http://www.nanonewsnet.ru/ сайт о нанотехнологиях.
- 50. http://www.nanometer.ru/ сайт нанотехнологического сообщества Нанометр.
- 51. http://www.dopedu.ru/ информационный портал системы дополнительного образования детей.
- 52. http://www.researcher.ru/methodics/teor/f 1abucy/a 1abujp.html информационный Интернет-портал нового поколения для обеспечения исследовательской деятельности.

Литература, рекомендованная для учащегося:

- 53. Андриевский Р.А. Основы наноструктурного материаловедения, возможности и проблемы., 2014.
- 54. Богданов К.Ю. Что могут нанотехнологии? М.:Просвещение, 2009. 96 с.
- 55. Дячков П.Н. Углеродный нанотрубки: строение, свойства, применение.-М:БИНОМ Лаборатория знаний, 2006. 293 с.

- 56. Ильин А.П., Назаренко О.Б., Коршунов А.В., Роот Л.О. Особенности физико-химических свойств нанопорошков и наноматериалов., 2012.
- 57. Кузнецов Н.Т., Новоторцев В.М., Жабрев В.А., Марголин В.И. Основы нанотехнологии., 2014.
- 58. Кобаяси Н. Введение в нанотехнологию. М.: БИНОМ. Лаборатория знаний, 2008. 134 с..
- 59. Разумовская И.В Нанотехнология. 11 класс: учебное пособие.- М.:Дрофа, 2009. 222 с.
- 60. Ратнер М, Ратнер Д. Нанотехнология: простое объяснение очередной гениальной идеи. М.: Издательский дом «Вильямс», 2004. 240 с.
- 61. Рыбалкина М. Нанотехнологии для всех: большое в малом. -М.: 2005. 434 с.
- 62. Таланов В.М., Ерейская Г.П. Основы нанохимии и нанотехнологий., 2014.
- 63. Третьякова Ю. «Нанотехнологии. Азбука для всех.» Сборник статей под редакцией Ю.Третьякова. М:Физматлит, 2009. 368 с.
- 64. Уильямс Л, АдамсУ. Нанотехнологии без тайн. Путеводитель.-М.:Эксмо, 2009. - 224 с.

Хррис П. Углеродные нанотрубки и родственные структуры.-М.:Техносфера, 2003.